AN13151

RT500 Out of the Box (OOB) Demo

Rev. 0 — 19 February 2021 Application Note

. Contents
1 Introduction 1 Introduction..........ccceeeeeiieceenseceennnns 1
The i.MX RT500 is a cross-over processor that combines a high-performance 2 Prepqre the dem(?....: """ s 1
Cadence® Tensilica® Fusion F1 DSP with a next-generation Arm® Cortex® 3 mjggggggz?ﬁ(phcatlonmthe _________ 1
-M33 along with a 2D Vector GPU with LCD Interface and MIPI DSI PHY. 4 A — 5

The board comes pre-programmed with a “blinky” demo (RGB LED D19 5 Revision history..........coccnniinnnn. 16
blinking). The demo also uses the DSP, GPU, and Cortex®-M33, executing

various math functions, making a simple performance comparator for both cores, and showing the GPU's graphic performance
using drawing on a display screen.

This application note explains how to program and run the Out of the Box (OOB) demo and steps to run it on each core.

2 Prepare the demo

To run the OOB demo, ensure that the necessary tools and configurations are installed. For details, see the MIMXRT595-EVK
Getting Started Guide (in Section 2. Get Software).

The projects for Cortex®-M33 and the Fusion F1 DSP are available in the software folder. Import each demo using MCUXpresso
IDE for CM33 and Xtensa Xplorer IDE for Fusion F1.

Download and save the entire project in the SDK dsp_examples directory at the following location.<spk path>/boards/
evkmimxrt595/dsp examples/.

2.1 Import project in MCUXpresso IDE
1. Open MCUXpresso IDE.
In the Workspace, select File > Import > Existing Projects.
Navigate to the CM33 project folder.
Check the Copy projects into workspace checkbox.

Click the Finish button.

o M 0D

2.2 Import project in Xtensa Xplorer IDE
1. Open Xtensa Xplorer IDE.
In the Workspace, select File > Import > General > Existing Projects into Workspace.
Navigate to the DSP project folder.
In the Options section, do not select any of the listed options.

Click the Finish button.

o > w0 DN

3 Running the application in the IMXRT595 EVK

1. Open a serial terminal on your computer and configure it with the following settings.

h
P

https://www.nxp.com/MIMXRT595-EVK/startnow
https://www.nxp.com/MIMXRT595-EVK/startnow

NXP Semiconductors

Running the application in the IMXRT595 EVK

+ 115200 Baud rate
» 8-bit data
* No parity
* One-stop bit
* No flow control
2. Open MCUXpresso IDE and open the ocob_demo project.

3. To use another supported display, change the macro ‘DEMO_PANEL'’ in the ‘display_support.h’ file. The default is
rectangular RKO55AHD091 display.

14 * Definitions

16 #define DEMO_PANEL TFT_PROTO 5 @

17 #define DEMO_PANEL_RK@55AHDESL 1

18 #define DEMO_PANEL_RK@55IQHBOL 2

19 #define DEMO_PANEL_RME7162 3

26

21 #ifndef DEMO_PANEL

22 #define DEMO_PANEL DEMO_PANEL_RK@55AHDE9L
23 #endif

Figure 1. Demo_panel macro in display_support.h

4. Select the OOB project in MCUXpresso, and build it.

File Edit Source Refactor Navigate Search Project

- | ® ~| &} v Biw|mw

Figure 2. Build icon

5. Connect MIMXRT595-EVK to your computer using a micro USB to J40 (LINK USB) port.
6. Download the CM33 application to your MIMXRT595-EVK.

A% | -0-Q

Figure 3. Download icon

7. Run the application in MCUXpresso.

Search Project ConfigTools Run
Biw | o S

Figure 4. Run icon

8. Open Xtensa Xplorer IDE and configure the following options as shown in Figure 5.

RT500 Out of the Box (OOB) Demo, Rev. 0, 19 February 2021

Application Note

2/17

NXP Semiconductors

10.

11.

12.
13.

Running the application in the IMXRT595 EVK

Search Project Run Tools Window Help

FBmode: Off ~ ||P: ocob_demo ~|| C: nxp_rt500_RI2019 ~ || T: Debug ~ [[Build Active ~

Figure 5. Configure the options

Click the Build Active button to build the project.

C: nxp_rt500_RI2018 ~ T:Debug ¥ |Build Active ~

Open a command prompt on the following location “C:|Program Files (x86)|TensilicalXtensa OCD Daemon 14.07" and
execute the following command: “xt-ocd.exe -c fopology.xm!”. The command prompt appears as in Figure 6.

BN C\Windows\System32\cmd.exe - «t-ocd.exe -c topologyaml - m] X

a OCD Daemon 14.

nc. All rights

Figure 6. Command prompt

Return to Xtensa Xplorer and select Debug > Debug Configurations.

T:Debug ~ Build Active Run ~ Profile = Trace ¥ w E (C g

(no launch history) l

Debug As ¥
I Debug Cenfigurations... I

Organize Favorites..,

Figure 7.

In the Debug Configurations window, select Xtensa On-Chip Debug > oob_demo debug jlink.

Click the Debug button.

RT500 Out of the Box (OOB) Demo, Rev. 0, 19 February 2021

Application Note 3/17

NXP Semiconductors

B Debug Configurations

Running the application in the IMXRT595 EVK

Create. manage. and run configurations

X
x 3

Name: [oob_demao debug jlink
@ Attach To Xtensa GDB Port
& MP Launch

& Main ™. Trace| Synchronized Debug |] Common

Target
v [Target

Host name:
W corel: St_project)

localhast
ebug
~ [Atensa Single Core Launch

[use XOCD Manager

 OCD Connection (requires XOCD Manager)

» OCD Log eptions

» Profiling
Filter matched 7 of 7 items
14. The Download binary dialog box prompts to download the application to the core 0.
15. Click Yes. The project starts downloading the code to the RT595.
Dovwnload ikl — s
9 Download binary to: core0?
Yes: download binary and restart.
No : attach to target without restart.
|
Yes | ‘ No
Figure 8. Download library
16. Run the program on Xtensa Xplorer IDE.
File Edit Source Refactor Navigate Search
3~ ||l @ N 3D R
Figure 9. Run icon
17. The project starts running on MIMXRT595-EVK. The red LED blinks and the following information appears on the
terminal:
M COM13 - Tera Term VT O X

File Edit Setup Control Window Help

ype a number hetween 1 — 6 to select a function and execute it on CM33 and FusionFi.
ygz]ﬁ to change to Graphic demo

-.GRAPHIC DEMO

Figure 10. Terminal window

RT500 Out of the Box (OOB) Demo, Rev. 0, 19 February 2021
Application Note

4/17

NXP Semiconductors

Project overview

18. To select one of the options, type a number on the serial terminal. For details on the demo project, see the chapter
Project overview.

4 Project overview

This demo uses the Cortex®-M33, Fusion F1 DSP, and the GPU. The first six options execute a specific math function and show
a simple performance comparator between the Cortex®-M33 and the Fusion F1. The last option draws on the display connected
through the MIPI port and shows the GPU performance on the serial terminal.

To execute a math function from option 1-6, type the function number. The cycle count result of each core appears in the terminal.
Both the Cortex®-M33 and Fusion F1 DSP cores can execute the functions listed in Table 1.

Table 1. Math functions

Math Function Description

Square Root Gets the square root of a decimal number. In this demo, the input value is 0.25.
Sine Gets the sine of a decimal number. In this demo, the input value is 0.5.

Vector Add Makes an addition of two integer vectors with a length of 200 each.

Vector Dot Product Executes the vector dot product of two float vectors with a length of 16 each.
Inverse Matrix Executes the inverse of a 2x2 float matrix.

Matrix Transpose Executes the transpose operation of an 8x8 float matrix.

The demo uses the Message Unit to coordinate the execution and communicate the DSP the math function that has to execute.
forFor details on Message Unit, see Chapter 42: Messaging Unit on the RT500 User Manual.

4.1 Cortex®-M33

This section shows the code and libraries needed for the Cortex® -M33 application.

The Cortex® -M33 uses some files to execute the math functions. The source files are available at the following path: ‘<SDK
path>/CMSIS/DSP/Source’.

The source files required for this demo are:

* arm_common_tables.c * arm_mat_add_q31.c

» arm_const_structs.c « arm_mat_inverse_f32.c

» arm_dot_prodf_32.c * arm_mat_trans_f32.c

« arm_sqrt_q31.c e arm_sin_q31.c
main_cm.c

This file contains all the math functions, all required initializations including clocks, debug console, and the message unit.

The program starts with pin initialization functions. Each function initializes different components used in the demo.

RT500 Out of the Box (OOB) Demo, Rev. 0, 19 February 2021
Application Note 5/17

NXP Semiconductors

Project overview

Table 2. Pin configurations

Pin initialization function Description

BOARD_InitPins() Initialize the RGB LED and PMIC pins.

BOARD_InitUARTPIns() Initialize the UART pins used for the serial communication with the PC.
BOARD_InitPsRamPins() Initialize the pPSRAM pins used for the GPU demo section.
BOARD_InitFlexlOPanelPins() Initialize the FlexIO pins if the TFT Proto display is selected on the macro

‘DEMO_PANEL'. If set, connect the display through J43 at the back of the board.

BOARD_InitMipiPanelPins() Initialize MIPI pins if a mipi display is selected on the macro ‘DEMO_PANEL'. This
is the default configuration. If set, connect the display through J44 at the back of
the board.

RT500 Out of the Box (OOB) Demo, Rev. 0, 19 February 2021
Application Note 6/17

NXP Semiconductors

Project overview

L€] main_cm.c &2

99= int main(void)

eo {

81 /* Init board hardware. */
02 status_t status;

es usart_config t config;

8s BOARD_InitPins();
26 BOARD_InitUARTPins();
o7 BOARD_InitPsRamPins();

29 #if (DEMO_PANEL_TFT_PROTO 5 == DEMO_PANEL)
10 BOARD_InitFlexIOPanelPins();

12 GPIO_PortInit(GPIO, BOARD_SSD1963_RST_PORT);
13 GPIO _PortInit(GPIO, BOARD_SSD1963_CS_PORT);
14 EPID_Pﬂl‘tInit (GPIO, BGAHD_SSDIQEE*_RS__PGRT} -
15 #else
16 BOARD InitMipiPanelPins();

18 GPIO_PortInit(GPIO, BOARD MIPI_POWER_PORT);
19 GPIO PortInit(GPIO, BOARD MIPI_BL_PORT);
20 GPIO_PortInit(GPIO, BOARD MIPI_RST_PORT);

22 #if (DEMO_PANEL_RM67162 == DEMO_PANEL)
23 GPID_PortInit(GPID, BOARD MIPI_TE_PORT);
24 #endif

26 #endif

assert(false);

28 BOARD BootClockRUN();

29 BOARD InitDebugConsole();

30

31 status = BOARD InitPsRam();
32 if (status != kStatus_Success)
33 {

34

35

}

Figure 11. Board and pins initialization.

RT500 Out of the Box (OOB) Demo, Rev. 0, 19 February 2021
Application Note 7/17

NXP Semiconductors

Project overview

The next step is to initialize the peripherals used in the demo.

Table 3. Peripherals initialization functions

Peripheral initialization function Description

CTIMER_INIT() A CTIMER is used for time measuring. The CTIMERZ2 is configured to trigger
every 5 microseconds to obtain the cycle count for the CM33.

LED_INIT() Initializes RGB LED.
MU_Init(APP_MU) Initializes the Message Unit, used to communicate the CM33 with the Fusion
F1 DSP

237 J* Initialize CTIMER */
238 CTIMER_INIT();

239 /* Initialize LED */
240 LED_INIT();

241 /* Clear MUA reset */

242 RESET PeripheralReset(kMU _RST SHIFT RSTn);
43 J¥MUA init */

MU Tnit(APP_MU);

Figure 12. Peripherals initialization functions

Now, initialize the DSP core with BOARD_DSP_lInit(). This function initializes the PMIC, configure the DSP clock, and sets the DSP
image address to copy the Fusion F1 application into RAM.

The Cortex® -M33 can copy the entire DSP application into RAM. You can enable or disable this action by changing the macro
‘DSP_IMAGE_COPY_TO_RAM’ value. In this demo, this action is disabled (DSP_IMAGE_COPY_TO_RAM = 0) by default for
debugging purposes.

/* Copy DSP image to RAM and start DSP core. */
BOARD DSP_Init();

Figure 13. DSP initialization

It is important to remark that the Cortex-M33 has to start the DSP operation setting SYSCTLO_DSPSTALL register inside
DSP_Start() function. For further information about DSP initialization and configuration, see the Getting Started with Xplorer for
EVK-MIMXRT595. You can find this document inside the SDK folder: ‘<SDK path>/docs/".

Once the DSP is configured and running, the CM33 waits for the Fusion F1 boot flag. This is to ensure that the DSP is up and
ready to start the application.

UA init */

MU_TInit(APP_MU);

/* Copy DSP image to RAM and start DSP core. *
BOARD_DSP_Init();

/* Wait DSP core is Boot Up */ Waits for the DSP boot flag.
while (BOOT_FLAG != MU_GetFlags(APP_MU));

* Enable Rx and Tx on UART */
USART_GetDefaultConfig(&config);
config.baudRate_Bps = BOARD_DEBUG_UART_BAUDRATE;
config.enableTx true;
config.enableRx = true;

Figure 14. DSP boot flag

Now, the UART interrupt is enabled to receive the information typed on the serial terminal.

RT500 Out of the Box (OOB) Demo, Rev. 0, 19 February 2021
Application Note 8/17

NXP Semiconductors

Project overview

/* MUA init */
MU_Init(APP_MU);

/* Copy DSP image to RAM and start DSP core. */
BOARD DSP_Init();

/* Wait DSP core is Boot Up */
while (BOOT FLAG != MU _GetFlags(APP_MU});

/* Enable Rx and Tx on UART */

USART _GetDefaultConfig(&config);
config.baudRate_Bps = BOARD_DEBUG_UART_BAUDRATE;
config.enableTx = true;

config.enableRx = true;

USART Init(DEMO_USART, &config, DEMO_USART CLK FREQ);

/* Enable RX interrupt. */

USART EnableInterrupts(DEM® USART, kUSART RxlevelInterruptEnable | RUSART RxErrorInterruptEncble);
EnableIRQ(DEMO USART IRQN);

Figure 15. UART interrupt

Both cores are ready to start the application! The CM33 is waiting for input on the serial terminal and toggling the red LED. The
Fusion F1 is waiting for a message from CM33 with the MU. When a number is typed on the terminal, the UART interrupt is
triggered, and the application executes the basic performance comparator between the CM33 and Fusion F1 DSP. You can find
this inside the cpu_test() function

“wold DEMO_USART_IRQHandler({woid)

1
/* If new data arrived. */
it ((RUSART RxFifoNotEmptyFlag | RUSART RxError) & USART GetStatusFlags(DEMO USART))
1

dataTyped
uartTyped

USART_ReadByte(DEMO_USART);
true;

¥
2/* Add for ARM errata 838869, affects Cortex-M4, Cortex-MAF Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined CORTEX M 2% (_ CORTEX M == 4U)
__DsB();
#endif

}

Figure 16. UART interrupt handler

If the input data corresponds to a number between 1 to 6, then the CM33 executes the math function (showed on the list below)
and sends a message to Fusion F1, indicating which function has to run.

« arm_mat_sqrt_Test()
* arm_mat_sine_Test()
* arm_mat_vec_add_Test()
» arm_mat_vec_dot_Test()
e arm_mat_mtx_inv_Test()

» arm_mat_mtx_tnsp_Test()

RT500 Out of the Box (OOB) Demo, Rev. 0, 19 February 2021
Application Note 9/17

NXP Semiconductors

Project overview

switch{dataTyped)
1
case "1°:

/* Execute square root *f
arm mat sqrt Test(); —» Execute math function
/* Communicate with FusionFl to execute math function

®

' Send message

MU_SendMsg(APP_MU, CHN_MU_REG_NUM, 1);
dataTyped = @; - - Clea I ita
break;

case "2':

/* Execute sine */
arm_mat_sine_Test();
J* Communicate with FusionFl to execute math function
MU_SendMsg(APP_MU, CHN MU REG_NUM, 2);
dataTyped = @;
break;
case '3':
/* Execute vector add */
arm_mat_vec_add Test();
/* Communicate with FuszionFl to execute math function
MU_SendMsg(APP_MU, CHN_MU_REG_NUM, 3);
dataTyped = @;
break;
case "4':
/* Execute vector dot product *f
arm_mat_wvec_dot_Test();
/* Communicate with FusionFl to execute math function
MU _SendMsg(APP MU, CHN MU REG NUM, 4):
dataTyped = 8;
break;
case '5':
/* Execute inverse matrix */
arm_mat_mtx_inv_Test();
J* Communicate with FusionFl to execute math function
MU_SendMsg(APP_MU, CHN_MU_REG_NUM, 5):
dataTyped = @;
break;
case '6':
/* Execute matrix transpose *f
arm_mat_mtx_tnsp Test();
f/* Communicate with FusionFl to execute math function
MU_SendMsg(APP_MU, CHN_MU_REG_NUM, &);
dataTyped = @;
break;
case '7':
/* Change to graphic test */

to Fusicn F1

*r

*f

=/

b |

graphicTest = 1; — Set flag to execute graphic test

dataTyped = @;
break;

default:
break;

}
uartTypsed = falss; — Clear uart flag

}

delay();

/* Toggle led */
LED_RED_TOGGLE(); —# Toggling LED

Figure 17. Main loop

RT500 Out of the Box (OOB) Demo, Rev. 0, 19 February 2021

Application Note

10/17

NXP Semiconductors

Project overview

All math functions are executed LOOP_COUNT times to obtain an average on the cycle count result; by default, this macro
has a value of 10000. All functions used by the CM33 have a similar structure, as shown in the following image.

{

h

static void arm_mat_sqrt_Test()

uint32_t 1i;
uint32_t cycles;

101 | | o e e \r\n");
PRINTF (" SQRT FUNCTION\r\n");
g31_t input = FLOAT 2 Q31(@.25f);

i

/* Reset count variable */
countUseconds = @;
/* Start ctiner */
CTIMER StartTimer(CTIMER);

Restart the counter

i *x® 7

/* Execute math function */
for(i = @; i < LOOP_COUNT; i++)
{

¥

arm_sqrt_q31(input,&sqrtResult);

function

/* Stop ctimer */
CTIMER StopTimer(CTIMER);

/* Verify the result */
if(abs(sqrtRef - sqrtResult) > 2)
PRINTF("ERROR on SQRT\r\n");

Stop Ctimer count

Verify result

Input variable

Execute math

Obtain cycle counts

/* Convert ctimer counts to cycles */

cycles = (uint32_t)((countUseconds*CYCLES_PER_COUNT)/LOOP_COUNT);

PRINTF("CM33 SQRT takes %d cycles\r\n\r\n", cycles);

Figure 18. Math function structure

4.2 Vector Graphics Processing Unit (GPU)

If the input data corresponds to a 7, a flag is set indicating that it is time to execute the GPU test. The demo ends with the cpu test,
creates vglite_task, and starts the scheduler.

This task manages all the GPU support, clocks, memory registers, and display initialization through VGLite API. The application

draws a tiger on the screen and shows you the GPU performance on the serial terminal.

RT500 Out of the Box (OOB) Demo, Rev. 0, 19 February 2021

Application Note

11717

NXP Semiconductors

Project overview

static void wvglite_task(void *pvParameters)
{
status_t status;
vg_lite_error_t error;
uint32_t startTime, time, n = @, fps_x_1eee;
[status = BOARD_PreparevGLiteController(); |——» Configure GPU clocks, memory, and interrupt.
1t (status != kStatus Success)
{
PRINTF (“Prepare VGlite contolor error\rin");
while (1)
]
¥
error = init vg lite();
it (error)
{
PRINTF("init_wg lite failed: init_vg lite() returned error ¥d\n", error);
while (1)
3
}
startTime = getTime();
while (1)
{
redraw() ;
n++;
if (n >= 6@ : oo :
{ ¢) Obtain FPS and print it on terminal
time = getTime() - startTime;
fps_x_1080 = (n * 1000 * 1000) / time;
PRINTF("%d frames in ¥d mSec: ¥d.¥d FPS\r\n", n, time, fps_x_100@ / 1008, fps_x_leee ¥ 1600);
n = @;
startTime = getTime();
}
¥
}
Figure 19. GPU task

For this demo, the RT595 uses the VG-Lite rendering API, which supports 2D vector/raster rendering operations for interactive
user interface and keeps memory footprint to the minimum. This helps implement applications for mobile or 10T devices.

The graphic demo used in this application at ‘<SDK path>/boards/evkmimxrt595/vglite_examples/tiger_freertos/’. You can also
find more graphic-focused demos within the RT500 SDK.

4.3 Fusion F1 DSP

This section shows the code and libraries needed for the Fusion F1 DSP application.

NatureDSP is a library provided used by the Fusion F1. This library contains math API’s for use. The source files are found in the
following path: ‘<sbk path>/middleware/dsp/naturedsp/fusionfl’. The documentation about the library is available inside
the ‘doc’folder.

The Fusion F1 uses some files of the Nature DSP library. The files required for this demo are:

» mtx_inv2x2f_fusion.c * NatureDSP_Signal.h
* mix_tran4x4f_fusion.c » NatureDSP_types.h

Table continues on the next page...

RT500 Out of the Box (OOB) Demo, Rev. 0, 19 February 2021
Application Note 12/17

NXP Semiconductors

Project overview

* vec_add32x32_fusion_fast.c * scl_sine_table32.h

+ vec_dotf_fusion.c scl_sqrt_table.h

* vec_recip_table.c * scl_sine32x32_fusion.c

» vec_recip_table.h + scl_sine_table32.c

* naturedsp_input.h » scl_sqrt32x32_fusion.c
* scl_sqrt_table.c

The main files for this application are main_dsp.c and srtm_naturedsp_test.c. Both files are located in the project’s source folder.
main_dsp.c

Initialize the debug console and the message unit. The Fusion F1 uses the function MU_SetFlags() to send the boot flag to CM33
and indicates DSP start.

RT500 Out of the Box (OOB) Demo, Rev. 0, 19 February 2021
Application Note 13/17

NXP Semiconductors

Project overview

L] main_dsp.c 532

“int main(void)
{
usart_config t config:;
uint8_t g_msgRecv = 0;

/* Init board hardware. */

EOARD_InitDebugCDnsole(}:

/* Enable Rx and Ix on UART */

USART GetDefaultConfig(&config):
config.baudRate Bps = BOARD DEBUG_UART BAUDRATE;
config.enableTx true;

config.enableRx = true;

USART Init (DEMC USART, &config, DEMO USART CLK FREQ):

/* MUB init */

MU Init (APP_MU):

/* Send flag to Core 0 to indicate Core 1 has startup */
MU SetFlags (APP MU, BOOT_FLAG):

while (1)

i
/* Wait until a message from CM33 is received */
g_msgRecv = MU ReceiveMsg(APP_MU, CHN MU REG_NUM):

/* Execute math function */
switch(g_msgRecv)
{

Figure 20. UART and MU initialization

Finally, the Fusion F1 will wait for CM33 messages using MU_ReceiveMsg(). Depending on the received message from the CM33,
the Fusion F1 will call the math function.

RT500 Out of the Box (OOB) Demo, Rev. 0, 19 February 2021
Application Note 14/17

NXP Semiconductors

Project overview

}

Send flag to Core 0 to indicate Core 1 has startu
MU_SetFlags (APP_MU, BOOT_FLAG);
while (1)
{
Wait until a message from CM33 is received */
g_msgRecv = MU_ReceiveMsg(APP_MU, CHN_MU_REG_NUM) ;
LXSUULT Maltll TUuncti

switch (g _msgRecv)
{

case 1:
/* Execute sguare root */
TEST_SQRT ()7
break;

case 2:

TEST_SINE():

break;
case 3:
/* Execute vector add */
TEST_VEC_ADD();
break;
case 4:

Execute wvector dot product *
TEST_VEC_DOT():

break;
case 5:

/* Execute inverse matrix *

TEST_MATRIX_INV():

break;
case 6:

Execute matrix transpose
TEST_MATRIX_TRANSPOSE():
break;

default:

break;

Figure 21. Receive a message from CM33 indicating which function to execute.

srtm_naturedsp_test.c

In this file, you will find the six math functions declaration used in the application.

1. TEST_SQRT()

2. TEST_SINE()

3. TEST_VEC_ADD()

4. TEST_VEC_DOT()

5. TEST_MATRIX_INV()

6. TEST_MATRIX_TRANSPOSE()

Each function initialize the required variables, executes the math function from the NatureDSP library, and verifies their results.
The math function is executed LOOP_COUNT times to obtain an average on the cycle count result. By default, this macro has a
value of 100. All functions have a similar structure, as shown in the following image.

RT500 Out of the Box (OOB) Demo, Rev. 0, 19 February 2021

Application Note

15717

NXP Semiconductors

Revision history

“wvoid TEST SQRT()
{

uint32_t i:

const int32 t input
int32_t sqgrtResult = 0;
const int32 t sqgrtRef

FLOAT 2 Q31(0.25f);| Input, result and

FLOAT 2 Q31(0.5f);

reference variables

/* Obtain init cycle count
tic = get_ccount():

*/'| Obtain cycle count

/* Execute math function
for(i = 0; 1 < LOUP_COUHT;
{

sgrtResult = scl_sqrt3

*/

i+4)

2x32 (input) ;

/* Obtain end cycle count
toc = get_ccount();

xf

/* Verify the result */
if((sgrtRef - sgrtResult)
PRINTF ("ERROR on 3QRT\

Execute math
function

Obtain cycle count

> 1000) | Verify result

r\n"):

PRINTF ("Fusion F1 SQRT takes %d cycles\ri\n\r\n",

}

Figure 22. Fusion F1 math function structure

(toc - tic)/LOOP_COUNT):

5 Revision history

This table summarizes the revisions of this docume

Table 4. Revision history

nt.

Revision number

Date

Substantive changes

0

19 Feb 2021

Initial Draft

RT500 Out of the Box (OOB) Demo, Rev. 0, 19 February 2021

Application Note

16/17

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers to use NXP products. There
are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, Dynam|Q, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, pVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 19 February 2021
Document identifier: AN13151

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Prepare the demo
	2.1 Import project in MCUXpresso IDE
	2.2 Import project in Xtensa Xplorer IDE

	3 Running the application in the IMXRT595 EVK
	4 Project overview
	4.1 Cortex®-M33
	4.2 Vector Graphics Processing Unit (GPU)
	4.3 Fusion F1 DSP

	5 Revision history

